Learning Dynamic Multimodal Networks

Gary Ang Dissertation Defense, 22 May 2023

- Related Work
- Research Summary
- Representative Works
- Conclusion & Future Research

Overview: Dynamic Multimodal Networks

Overview: Modeling of Dynamic Multimodal Networks

Overview: Research Objectives and Framework

Learning Dynamic Multimodal Networks

Progressively research on i) modelling <u>multimodality</u> and <u>dynamicity</u> in networks; and ii) <u>interpreting</u> role and contribution of multimodality and dynamicity of networks on predictive tasks

Overview: Key Definitions

• Dynamic networks

$$G_t^c = [g^c(t - K^c), ..., g^c(t - 1)]$$

- $g^{c}(t-k) = (v^{c}(t-k), e^{c}(t-k))$ is the snapshot at time-step (t-k) for network of type c
- **Dynamic multimodal node attributes** (from modality *m*, out of *M* modalities)

$$X_{V_t^c,t}^m = [x_{V_t^c}^m(t - K^m), ..., x_{V_t^c}^m(t - 1)] \in \mathbb{R}^{|V_t^c| \times K^m \times d^m}$$

K^c and K^m are number of time-steps in windows of network and mth attribute modality, respectively.

Overview: Types of Networks

I. Static Networks with **Multimodal** Attributes $M > 1, K^{m} = K^{c} = 1$

II. Static Networks with **Dynamic Multimodal** Attributes M > 1, $K^m > 1$, $K^c = 1$

III. Dynamic Networks with Dynamic Multimodal Attributes $M>1, K^{m}>1, K^{c}>1$

Related Works	Attribute			Net	work	Related Work
	$\begin{array}{c} \text{Static} \\ K^m = 1 \end{array}$	$\left \begin{array}{c} \text{Dynamic} \\ K^m > 1 \end{array} \right $	$\frac{\text{Multimodal}}{M > 1}$	$\begin{array}{c} \text{Static} \\ K^c = 1 \end{array}$	$\begin{array}{c} \text{Dynamic} \\ K^c > 1 \end{array}$	Modelling approaches and examples of key works.
 Most random walk models do not capture attributes Most GNN models assume attributes static and/or unimodal 	•	0	0	•	0	Static Network Models: DeepWalk [116], node2vec [52], metapath2vec, SDNE [150], GVAE [74], CAN [102], GCN [75], GraphSAGE [55], GAT [146], HGT [60]. Some static network models are designed for multimodal attributes, but only cap- ture two modalities - visual and textual [126,[157]].
 Most do not focus on attributes or only unimodal attributes 	0	•	0	0	•	Dynamic Network Models: DANE [80], EvolveGCN [112], VGRNN [53], Dyn- GEM [50], TGAT [167]. Most dynamic network models assume time-stamps of dynamic attributes are aligned with time- stamps of dynamic networks, i.e. they can- not capture sequences of attributes and net- works that are of different lengths or gran- ularities.
 Capture time-series attributes but unimodal, num. Static networks 	0		0	•	0	Spatio-Temporal Models: DCRNN [84], STFGCN [177], GC-LSTM [24], StemGNN [37], MTGNN [164].
Usually do not capture networksUnimodal time-series attributes	0	•	0	O	0	Time-Series Models: NBEATS [107], TST [179], TFT [89], DARNN [118], Dy- GAP [143]. Most time-series models cap- ture unimodal numerical attributes. Some financial time-series models, such as VoIT- AGE [129], are designed for dynamic mul- timodal attributes and networks, but only capture two modalities, e.g., text and audio of calls, and static networks.

Summary of Research Part I: Networks with Multimodal Attributes

Model networks with multimodal attributes

Capture different types of positional attributes

Model different types of nodes and relationships

Interpret contribution of different networks and multimodal attributes

Research Objective		Attribu	Network			
Work based on Dissertation (Model)	$\begin{array}{c} \text{Static} \\ K^m = 1 \end{array}$	$\begin{array}{c} \text{Dynamic} \\ K^m > 1 \end{array}$	$\begin{array}{c} \text{Multimodal} \\ M > 1 \end{array}$	$\begin{array}{c} \text{Static} \\ K^c = 1 \end{array}$	$\begin{array}{c} \text{Dynamic} \\ K^c > 1 \end{array}$	
Networks with Multimodal At- tributes	~	-	 ✓ 	\checkmark	-	
Learning Network-Based Multi-Modal Mobile User Interface Embeddings, ACM IUI 2021 (MAAN)	MAAN u tiple cha work stru tributes.	tilizes atte nnels and ctural infor	ention mechan stages to mo rmation and m	nisms acr odel bipa ultimoda	ross mul- rtite net- l node at-	
Learning Semantically Rich Network- Based Multi-Modal Mobile User Interface Embeddings, ACM TiiS (EMAAN)	EMAAN extends MAAN to capture edge attributes with additive and multiplicative methods.					
Learning User Interface Semantics from Heterogeneous Networks with Multimodal and Positional Attributes, ACM IUI 2022 (HAMP)	HAMP u transform multimod	tilizes a p er to mode al and pos	oositional vec el heterogened itional node a	torizer a ous netwo ttributes.	nd graph orks with	
Learning and Understanding User In- terface Semantics from Heterogeneous Networks with Multimodal and Posi- tional Attributes, ACM TiiS (AHAMP)	AHAMP covery ar understar	extends H nd interpre nd importar	AMP with an a tability methon to the second	adaptive g od to disc ges.	graph dis- cover and	

Proposed MAAN, EMAAN, HAMP, AHAMP models

Summary of Research Part II: Networks with Dynamic Multimodal Attributes

dynamic multimodal attributes

Proposed KECE, GLAM models Model networks with dynamic **Research Objective** Attribute Network multimodal attributes Work based on Dissertation Dynamic | Multimodal | Static | Dynamic Static (Model) $K^{m} = 1$ $K^{m} > 1$ M > 1 $K^c = 1$ $K^c > 1$ Networks with Dynamic Multimodal Key Aspects Attributes Address low signal-to-noise and non-Learning Knowledge-Enriched Com- KECE utilizes attention mechanisms to model stationarity of dynamic multimodal pany Embeddings for Investment Manknowledge graphs with multimodal attributes, and agement, ACM ICAIF 2021 (KECE) learn knowledge-enriched node embeddings. attributes Investment and Risk Management with GLAM models global and local information from multiple modalities and heterogeneous networks, Online News and Heterogeneous Networks, ACM TWEB (GLAM) and uses an adaptive curriculum learning method to Capture global (relevant to all network isolate significant changes in time-series dynamics to address noisy time-series information. nodes), and local (specific to node)

Summary of Research Part III: Dynamic Networks with Dynamic Multimodal Attributes

Research Area		Attribut	Network		
Work based on Dissertation (Model)	Static $K^m = 1$	$\begin{array}{c} \text{Dynamic} \\ K^m > 1 \end{array}$	$\begin{array}{c} \text{Multimodal} \\ M > 1 \end{array}$	Static $K^c = 1$	$\begin{array}{c} \text{Dynamic} \\ K^c > 1 \end{array}$
Dynamic Networks with Dynamic Multimodal Attributes	 ✓ 	 ✓ 	 ✓ 	 ✓ 	 ✓
Guided Attention Multimodal Multi- task Financial Forecasting with Inter- Company Relationships and Global and Local News, ACL 2022 (GAME)	GAME lengths a network v ships, an global mu relevant g	encodes le and frequer weights to u d uses cro ultimodal i global infor	ocal informa ncies, learns update explici ss attention l nformation to mation.	tion of dynamic t network between 1 guide le	different implicit relation- local and arning of
Learning Dynamic Multimodal Im- plicit and Explicit Networks for Mul- tiple Financial Tasks, IEEE BigData 2022 (DynMix)	DynMix multimod works ard form diff learning time-serie	discovers of lal time-set e paired wi erent view approach t es distribut	lynamic impl ries. The dyn th dynamic e: s for a dynam o address no ions and corre	icit netwo namic imp xplicit net nic self-su visy non-se elations.	orks from blicit net- tworks to upervised stationary
Learning Dynamic Multimodal Net- work Slot Concepts from the Web for Forecasting Environmental, Social and Governance Ratings, Under review at TWEB (DynScan)	DynScan concepts modality ment loss lized to a multimod	learns dyn with atte alignment functions. address noi lal network	namic multin ntion mecha and intra-mo The learnt sl sy and non-s information.	nodal netw nisms, a dality dis ot concep tationary	work slot nd inter- entangle- ts are uti- dynamic

Proposed GAME, DynMix, DynScan models

Model dynamic networks with dynamic multimodal attributes

Address low signal-to-noise and nonstationarity of dynamic networks

Capture evolving dependencies between nodes due to dynamic multimodal attributes, i.e., multiple types of dynamic implicit networks

Interpret contribution of dynamic networks and dynamic multimodal attributes

I. Human Computer Interaction (HCI) Domain

Heterogeneous Attention-based Multimodal Positional (HAMP) network model

- Learning User Interface Semantics from Heterogeneous Networks with Multimodal
- and Positional Attributes, ACM IUI 2022, Honorable Mention

Adaptive HAMP (AHAMP) network model

- Learning and Understanding User Interface Semantics from Heterogeneous
 - Networks with Multimodal and Positional Attributes, ACM TiiS

Representative

Works

to be covered in this presentation

II. Financial Domain

Dynamic Multimodal Multitask Implicit Explicit (DynMix) network model

 Learning Dynamic Multimodal Implicit and Explicit Networks for Multiple Financial Tasks, IEEE BigData 2022

III. Sustainability Domain

Dynamic Multimodal Slot Concept Attention-based Network (DynScan) model

 Learning Dynamic Multimodal Network Slot Concepts from the Web for Forecasting Environmental, Social and Governance Ratings, ACM TWEB, Submitted & Under Review

4 of the other works listed earlier were already shared during the dissertation proposal

Representative Work I HAMP and AHAMP - Modeling Networks with Multimodal Attributes

Heterogeneous Attention-based Multimodal Positional (HAMP) network model

 Learning User Interface Semantics from Heterogeneous Networks with Multimodal and Positional Attributes, ACM IUI 2022, Honorable Mention

Adaptive HAMP (AHAMP) network model

 Learning and Understanding User Interface Semantics from Heterogeneous Networks with Multimodal and Positional Attributes, ACM TiiS

Framing UIs as Networks

From heterogeneous network message passing to adaptiveness and interpretability

Heterogeneous network encoding in HAMP $AttScore_{\langle v_s, r, v_t \rangle} = softmax_{v_s \in N(v_t)} scale(X_{K, v_s}'' W_{att}X_{O, v_t}')$ Update node representations with learnt attention scores $H_{\langle v_s, r, v_t \rangle, t} = \sum_{v_s \in N(v_t)} AttScore_{\langle v_s, r, v_t \rangle} \cdot X_{V, v_s}'' W_V$ across multiple tuples Then aggregate by taking mean Adaptiveness and interpretability in AHAMP Learnable mask $H_{\langle v_s, r, v_t \rangle, t}^{(k)} = \sum_{v_l \in \mathcal{N}(v_l)} \tilde{e}_{l, \langle v_s, r, v_t \rangle} \odot (\text{AttScore}_{\langle v_s, r, v_t \rangle}^{(k)} \cdot X_{V, v_s}^{\prime\prime(k)} W_V^{(k)})$ Prediction conditioned on masked graph $\mathcal{L}' = \mathcal{L}(y, \hat{y} = \mathbf{f}_{\theta, \mathbf{E}_{\mathrm{L}}}(G_{L} = (V, X)))$ $\sum \quad \tilde{e}_{l,\langle v_s,r,v_t\rangle} \log(\tilde{e}_{l,\langle v_s,r,v_t\rangle}) + (1 - \tilde{e}_{l,\langle v_s,r,v_t\rangle}) \log(1 - \tilde{e}_{l,\langle v_s,r,v_t\rangle})$ **Entropy regularization** $\langle v_s, r, v_t \rangle \in E$ $+\beta$ $\tilde{e}_{l,\langle v_s,r,v_t\rangle}$ **Sparsity regularization** $\langle v_s, r, v_t \rangle \in E$

Datasets

- Extracted from RICO and ENRICO
- RICO largest mobile app. dataset; ENRICO is subset of RICO with manually annotated topic labels (*e.g., dialer, news, tutorial topics*)

Datasets	RICO-N	RICO-O	ENRICO
Num. of Application Nodes	1000	1000	869
Num. of UI Screen Nodes	5879	9108	1460
Num. of UI View Class Nodes	1563	2920	1506
Num. of UI Element Nodes	109,387	203,522	28,821
Num. of App - UI Screens Edges	5879	9108	1460
Num. of UI Screens - UI View Classes Edges	38,961	68,305	10,113
Num. of UI View Classes - UI Elements Edges	109,387	203,522	28,821
Length of longest sequence	36	46	38
Max. depth of hierarchy	9	10	9
Num. of UI element component-types	26	26	-
Num. of UI screen genres	36	33	-
Num. of UI screen topics	-	-	20
Range of mobile app. ratings	1.15 to 4.92	1.72 to 4.91	-

Selected Experiment Results

ι	JI Screen G	enre Classi	fication		UI Screen T	opic Classif	ication
	RIC	CO-N	N RIC			ENF	RICO
	Micro F1	Macro F1	Micro F1	Macro F1		Micro F1	Macro F1
Log. Regression	0.127	0.059	0.153	0.043	Log. Regression	0.264	0.118
GCN	0.087	0.048	0.137	0.042	GCN	0.290	0.110
SGC	0.046	0.011	0.113	0.012	SGC	0.179	0.016
GraphSAGE	0.079	0.035	0.136	0.038	GraphSAGE	0.335	0.231
GAT	0.079	0.058	0.159	0.063	GAT	0.305	0.196
hGAO	0.087	0.067	0.168	0.060	hGAO	0.390	0.278
HAN	0.698	0.648	0.517	0.298	HAN	0.452	0.436
Screen2Vec	0.392	0.311	0.466	0.407	Screen2Vec	0.336	0.206
HAMP	0.970	0.877	0.921	0.759	HAMP	0.996	0.996
AHAMP	0.993	0.966	0.997	0.962	AHAMP	0.996	0.997

- HAMP and AHAMP outperform baselines across 4 tasks UI screen genre and topic classification; UI element component-type classification; app. rating regression. Selected results above
 - In general, HAN (which models heterogeneous networks); and Screen2Vec(which models multimodal information) closest

Fig. 8. Learnt Attention Weights for App. Rating Regression (RICO-N). Darker shade of blue indicates higher attention weight β_m for the node. We see that multimodal feature, sequential position and spatial bounds 2 and 3 are higher.

Representative Work II DynMix - Modeling Dynamic Networks with Dynamic Multimodal Attributes

Dynamic Multimodal Multitask Implicit Explicit (DynMix) network model

Learning Dynamic Multimodal Implicit and Explicit Networks for Multiple Financial Tasks, IEEE BigData 2022

Capturing dynamic networks and dynamic multimodal information for multiple financial tasks

Overview

Using Dynamic Implicit Networks

Capture evolving dependencies between nodes due to dynamic multimodal attributes

Learn dynamic underlying networks for information from different modalities

For Dynamic Self-Supervised Learning

Align and regularize dynamic networks and time series from different modalities to extract dynamic signals

For Dynamic Self-Supervised Learning

Dynamic *alignment* and regularization with self-supervised learning

 sim_t^m - minimize distance between representations of same companies

 $cov_t^{m,exp/imp}$ - de-correlates representations of different companies

For Dynamic Self-Supervised Learning

Dynamic alignment and *regularization* with self-supervised learning

Datasets

- Dynamic networks: Global Database of Events, Language and Tone (GDELT) Global Knowledge Graphs (GKG)
- Dynamic multimodal attributes: Time series of stock price, news articles, and events

	IN-NY	IN-NA	BE-NY	BE-NA
Num. articles	189	,917	1,29	5,491
Num. stocks	336	371	1,693	1,705
Num. edges	2,212±1,574	$1,217\pm387$	4,913±2,887	3,973±1,749
Avg. edge weights	3,547±2,911	3,901±2,218	$1,537\pm1,386$	$1,541\pm1,448$
Num. event types	2,177	2,135	2,182	2,186
Event density	0.45±0.16	0.33±0.13	0.09±0.03	0.09 ± 0.03

Experiments

Forecast means, volatility, correlations

		IN-NY			IN-NA			BE-NY			BE-NA	
	RMSE	MAE	SMAPE	RMSE	MAE	SMAPE	RMSE	MAE	SMAPE	RMSE	MAE	SMAPE
						Mean F	orecasts					
GRU	0.0744	0.0144	1.4579	0.0356	0.0175	1.4801	0.1341	0.0343	1.4357	0.6119	0.0851	1.4587
TST	0.0742	0.0140	1.3844	0.0335	0.0155	1.3631	0.1286	0.0251	1.3139	0.5373	0.0637	1.5380
FAST	0.0742	0.0141	1.3511	0.0362	0.0164	1.7424	0.1464	0.0260	1.3403	0.6358	0.0673	1.3801
MTGNN	0.0712	0.0139	1.3002	0.0314	0.0149	1.4843	0.1386	0.0338	1.5168	0.4844	0.0609	1.3218
DYGAP	0.0723	0.0146	1.4430	0.0353	0.0157	1.4074	0.1430	0.0263	1.4411	0.6361	0.0670	1.3520
EVOLVEGCN-H	0.0743	0.0143	1.5058	0.0394	0.0176	1.3273	0.1470	0.0288	1.3540	0.6444	0.0823	1.4600
EVOLVEGCN-O	0.0750	0.0153	1.4372	0.0354	0.0158	1.2921	0.1453	0.0268	1.3679	0.6325	0.0726	1.4014
DYNMIX	0.0539	0.0111	1.1693	0.0244	0.0128	1.2080	0.1058	0.0194	1.2391	0.4164	0.0471	1.2337
	Volatility Forecasts											
GRU	0.2331	0.0507	0.6244	0.1188	0.0599	0.6384	0.4181	0.1049	1.1047	1.9152	0.2418	0.9816
TST	0.2330	0.0483	0.5578	0.1109	0.0559	0.6046	0.3974	0.0894	0.7063	1.7047	0.2133	0.8463
FAST	0.2332	0.0485	0.5595	0.1244	0.0605	0.6338	0.4688	0.0990	0.7521	1.9993	0.2316	0.7935
MTGNN	0.2011	0.0529	0.6206	0.1077	0.0565	0.6178	0.4122	0.0919	0.7488	1.5066	0.2023	0.7860
DYGAP	0.2224	0.0497	0.5475	0.1234	0.0606	0.6359	0.4542	0.0928	0.7028	2.0003	0.2410	0.8589
EVOLVEGCN-H	0.2331	0.0485	0.5602	0.1253	0.0619	0.6470	0.4688	0.1012	0.7670	2.0097	0.2547	0.8832
EVOLVEGCN-O	0.2328	0.0491	0.5831	0.1246	0.0607	0.6370	0.4656	0.1010	0.7646	1.9970	0.2419	0.8616
DYNMIX	0.1491	0.0410	0.5483	0.0870	0.0510	0.6086	0.3284	0.0763	0.7011	1.2956	0.1667	0.7227
					(Correlation	n Forecas	sts				
GRU	0.5361	0.4671	1.5484	0.5163	0.4425	1.4072	0.5341	0.4600	1.4455	0.5180	0.4416	1.4193
TST	0.5145	0.4498	1.4646	0.5069	0.4400	1.4802	0.5235	0.4540	1.4553	0.5099	0.4374	1.4661
FAST	0.5087	0.4414	1.3395	0.5099	0.4394	1.4239	0.5246	0.4546	1.4533	0.5112	0.4380	1.4374
MTGNN	0.5215	0.4558	1.5012	0.5167	0.4438	1.4078	0.5288	0.4576	1.4505	0.5268	0.4398	1.5195
DYGAP	0.5415	0.4562	1.4074	0.5074	0.4362	1.4192	0.5125	0.4443	1.4460	0.5060	0.4346	1.4738
EVOLVEGCN-H	0.5104	0.4448	1.3996	0.5058	0.4390	1.4681	0.5192	0.4520	1.4842	0.5270	0.4426	1.5217
EVOLVEGCN-O	0.5118	0.4466	1.4194	0.5064	0.4390	1.4564	0.5228	0.4536	1.4592	0.5033	0.4348	1.5197
DYNMIX	0.4272	0.3551	1.0844	0.4515	0.3810	1.2256	0.4898	0.4173	1.3042	0.4848	0.4095	1.3461

- Means: Diff. between DynMIX and baselines clearer for larger BE datasets
- Volatilities, correlations, events: Harder tasks. Diff. between DynMIX and baselines even clearer

Forecast events (NDCG)

	IN-NY	IN-NA	BE-NY	BE-NA
GRU	0.5909	0.3336	0.3091	0.2336
TST	0.5705	0.3513	0.2870	0.2179
FAST	0.6106	0.3549	0.3074	0.2246
MTGNN	0.5907	0.3710	0.2911	0.2317
DYGAP	0.6113	0.3485	0.3069	0.2126
EVOLVEGCN-H	0.4757	0.2743	0.2136	0.1542
EVOLVEGCN-O	0.5717	0.3512	0.2904	0.2193
DYNMIX	0.6182	0.3626	0.3163	0.2474

Ablation Study

	RMSE	MAE	SMAPE			
	1	Mean Foreca	ists			
w/o. dynamic SSL	0.0579	0.0124	1.1719			
w/o dynamic var. target	0.0569	0.0121	1.1782			
R=50%	0.0558	0.0121	1.1789			
w/o. time vect.	0.0562	0.0121	1.1759			
DynMIX	0.0539	0.0111	1.1693			
	Ve	olatility Fore	casts			
w/o. dynamic SSL	0.1527	0.0422	0.5544			
w/o dynamic var. target	0.1511	0.0420	0.5532			
R=50%	0.1501	0.0415	0.5503			
w/o. time vect.	0.1495	0.0419	0.5586			
DynMIX	0.1491	0.0410	0.5483			
	Cor	relation For	ecasts			
w/o. dynamic SSL	0.4973	0.4302	1.3785			
w/o dynamic var. target	0.4399	0.3685	1.1225			
R=50%	0.4304	0.3590	1.0983			
w/o. time vect.	0.4280	0.3562	1.0948			
DynMIX	0.4272	0.3551	1.0844			
		NDCG				
]	Event Foreca	ists			
w/o. dynamic SSL	0.6059					
w/o dynamic var. target	0.5617					
R=50%		0.5565				
w/o. time vect.		0.5861				
DynMIX		0.6182				

- Greatest drop in performance when
 - No dynamic SSL, or
 - No dynamic variance target (recall *cvar* and *tvar*)

Applications

Portfolio Allocation and Value-at-Risk

	IN	-NY	IN	-NA
	\mathcal{R}	% Br.	\mathcal{R}	% Br.
GRU	0.04	34.4%	1.20	2.2%
TST	0.05	22.8%	0.32	2.2%
FAST	0.03	15.6%	0.55	2.8%
MTGNN	0.67	4.4%	0.33	8.9%
DYGAP	0.41	6.7%	0.61	3.9%
EVOLVEGCN-H	0.01	13.9%	0.06	13.9%
EVOLVEGCN-O	0.06	15.6%	0.32	5.0%
DYNMIX	2.47	3.9%	3.31	1.1%

App. Higher better for \mathcal{R} ; lower better for % Br.

Portfolio Allocation Optimization

• Forecasts as inputs into mean-variance risk min.

 $max_{\mathbb{W}} \left(\mathbb{W}^T \mu - \lambda \mathbb{W}^T \Sigma \mathbb{W} \right)$

- Forecast of means as μ, forecast of volatilities and correlations used to get Σ; λ is degree of risk aversion
- Use forecasts to get optimal allocation weights W
- $E^{forecast}$ realized return of portfolio with forecast models; E^{naive} realized return of portfolio with historical mean and co-variance

$$\mathcal{R} = E^{forecast} / E^{naive}$$

Value-at-Risk (Portfolio Risk)

- 10 day 95% VaR of \$1m means 5% probability of losses exceeding \$1m over 10 day horizon for portfolio of assets
- VaR from forecasted volatilities and correlations
- Breach if actual realized loss > forecast VaR
- Percentage VaR breaches (% Br.), i.e. percentage of losses in testing set that led to VaR breaches

Representative Work III DynScan - Modeling Dynamic Networks with Dynamic Multimodal Attributes

Dynamic Multimodal Slot Concept Attention-based Network (DynScan) model

Learning Dynamic Multimodal Network Slot Concepts from the Web for Forecasting Environmental, Social and Governance Ratings, ACM TWEB, Submitted & Under Review

Overview

Dynamic Multimodal Slot Concept Learning

Inter-modality slot concept alignment

Maximize first and second order similarities of distributions – same slot across modalities should be similar

$$\mathcal{L}_{inter} = \sum_{(m,m')\in\mathbf{P_m}} \left(\frac{1}{|b-a|} ||\mathbb{E}(S_t^m[t-1]) - \mathbb{E}(S_t^{m'}[t-1])||_2 + \frac{1}{|b-a|^2} ||\mathbf{C}(S_t^m[t-1]) - \mathbf{C}(S_t^{m'}[t-1])||_2 \right)$$

where (m, m') are the modality pairs and $C(x) = \mathbb{E}((x - \mathbb{E}(x))^2)$

Intra-modality slot concept disentanglement

Minimize off-diagonals of covariances – different slots in one modality should be different

$$\mathcal{L}_{intra} = \text{scale}\left(\sum_{m \in [1,M]} \sum_{v_i \neq v_j} [COV^m]_{v_i,v_j}^2\right)$$

where
$$COV^m = \frac{1}{|L| - 1} \sum_{l \in L} (s^m [t - 1](l) - \overline{s}^m [t - 1]) (s^m [t - 1](l) - \overline{s}^m [t - 1])^{\intercal}$$

Datasets

- Dynamic networks: Global Database of Events, Language and Tone (GDELT) Global Knowledge Graphs (GKG)
- Dynamic multimodal attributes: Time series of stock price, news articles, and events
- ESG ratings from Sustainalytics of NYSE (NY) and NASDAQ (NA) companies

ESG Rating Distributions for NYSE (NY) and NASDAQ (NA) Companies.

Experiments

Selected Results

NY (NYSE)

		Env.			Soc.			Gov.	
	RMSE	MAE	SMAPE	RMSE	MAE	SMAPE	RMSE	MAE	SMAPE
XGBoost	15.548	12.311	23.1%	11.628	9.191	16.9%	10.331	8.292	13.2%
TST	15.023	11.666	22.8%	13.331	10.511	20.4%	14.512	12.223	21.0%
FAST	13.316	10.954	21.0%	10.514	8.626	16.1%	10.385	8.807	13.1%
GRU-GATv2	13.033	10.547	20.0%	9.826	7.801	14.4%	8.714	7.022	11.4%
EvolveGCN-H	22.945	17.512	39.5%	22.764	16.799	37.9%	25.048	18.142	37.1%
EvolveGCN-O	23.207	17.672	40.4%	22.822	16.827	38.9%	25.586	18.251	37.1%
DySAT	13.299	10.575	20.0%	10.004	7.937	14.6%	8.813	7.193	11.7%
DynMix	12.769	10.426	19.7%	9.583	7.739	14.3%	8.442	6.864	11.2%
DynScan	11.733	9.463	18.0%	8.989	7.182	13.2%	8.136	6.618	10.7%

- Difference between DynScan and baselines larger for Env./Soc. ratings
- Env. and Soc. ratings forecasting tasks generally harder
 - Gov. issues studied for a longer period, may be more stable and predictable
- Network information useful, but how it is captured important
 - DynMix closest. Among other baselines, GRU-GATv2, DySAT perform well, but not EvolveGCN
- Similar observations for companies on NASDAQ

Ablation Study

		NY			NA	
	RMSE	MAE	SMAPE	RMSE	MAE	SMAPE
			En	v.		
w/o. graph encoding	13.614	10.640	20.2%	12.476	9.732	19.1%
w/o. Linter	11.866	9.719	18.5%	11.382	8.904	17.5%
w/o. Lintra	11.747	9.546	18.2%	11.314	8.784	17.3%
L=3	11.761	9.466	18.0%	11.209	8.786	17.2%
L=20	11.727	9.414	17.9%	11.291	8.850	17.5%
L=50	11.740	9.352	17.8%	11.254	8.804	17.2%
DynScan	11.733	9.463	18.0%	11.239	8.668	17.1%
	Soc.					
w/o. graph encoding	9.871	7.856	14.5%	10.184	8.097	15.8%
w/o. Linter	9.025	7.196	13.3%	9.574	7.614	14.8%
w/o. Lintra	9.150	7.316	13.5%	9.584	7.634	14.9%
L=3	9.070	7.262	13.4%	9.554	7.582	14.8%
L=20	9.153	7.349	13.6%	9.399	7.494	14.6%
L=50	9.064	7.300	13.4%	9.498	7.596	14.8%
DynScan	8.989	7.182	13.2%	9.536	7.484	14.6%
			Go	ov.		
w/o. graph encoding	9.592	7.713	12.6%	9.033	7.318	12.3%
w/o. Linter	8.191	6.646	10.8%	8.032	6.672	11.3%
w/o. Lintra	8.332	6.815	11.1%	7.961	6.580	11.1%
L=3	8.081	6.565	10.6%	7.921	6.523	11.0%
L=20	8.142	6.614	10.7%	7.943	6.492	11.0%
L=50	8.409	6.823	11.0%	7.831	6.539	11.1%
DynScan	8.136	6.618	10.7%	7.831	6.451	10.9%

- Graph encoding important
- Slot concept alignment and disentanglement important
- Performance varies for different number of slot concepts

Interpretability

Synthetic Static Network Datasets

Interpretability

Selected Results

Interpretability

Selected Results

• S1, S2, S3 focus on nodes in complex and densely inter-connected network patterns, S4 and S5 focus on nodes in relatively simpler network patterns

Conclusion

- Intersection of multiple research areas learning dynamic multimodal networks involves time-series, multimodal, and network learning
 - Showed that effective learning of dynamic multimodal networks important for real world tasks
- Challenging due to *heterogeneity* and *dynamic nature* of information
 - Research across three parts addressed key challenges, proposed *nine models*
 - Collected **24** distinct datasets for experiments as dynamic multimodal network datasets not common
 - Experiments focused on **important HCI**, **financial**, **sustainability domains**, but proposed models can be applied to other tasks and domains (e.g., DynScan on different synthetic datasets)
- Interpretability of models challenging due to diversity of information, but important to understand model predictions for the same reason
 - MAAN, EMAAN, HAMP, AHAMP, and DynScan models designed for interpretability

Future Research

- Additional dynamic multimodal network **datasets**
 - Many possibilities, e.g., creative, social media datasets
- Learning dynamic multimodal networks for **tasks** in other domains
 - Generative or predictive tasks in creative (3D, video), economic (micro- & macroeconomic), social media domains
- Interpretability of dynamic multimodal network models
 - E.g., model agnostic methods such as counterfactuals for what-if analysis